
Detecting Blocking Errors in Go Programs
using Localized Abstract Interpretation

Oskar Haarklou Veileborg

Aarhus University

Denmark

oskar@cs.au.dk

Georgian-Vlad Saioc

Aarhus University

Denmark

gvsaioc@cs.au.dk

Anders Møller

Aarhus University

Denmark

amoeller@cs.au.dk

ABSTRACT
Channel-based concurrency is a widely used alternative to shared-

memory concurrency but is difficult to use correctly. Common

programming errors may result in blocked threads that wait indefi-

nitely. Recent work exposes this as a considerable problem in Go

programs and shows that many such errors can be detected auto-

matically using SMT encoding and dynamic analysis techniques.

In this paper, we present an alternative approach to detect such

errors based on abstract interpretation. To curb the large state

spaces of real-world multi-threaded programs, our static program

analysis leverages standard pre-analyses to divide the given pro-

gram into individually analyzable fragments. Experimental results

on 6 large real-world Go programs show that the abstract interpre-

tation achieves good scalability and finds 104 blocking errors that

are missed by the state-of-the-art tool GCatch.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Static Program Analysis, Concurrency, Channels

ACM Reference Format:
Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller. 2022.

Detecting Blocking Errors in Go Programs using Localized Abstract Inter-

pretation. In 37th IEEE/ACM International Conference on Automated Software

Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3561154

1 INTRODUCTION
The key feature of the Go programming language is its channel-

based approach to concurrency with lightweight threads. Instead

of communicating via shared memory, Go advocates the use of

channels to avoid errors involving data races. This language design

choice is a central reason for the popularity of the language. More

than 270 000 open source projects on GitHub use Go, including

prominent applications, such as, Docker and Kubernetes. However,

using channels does not eliminate all concurrency-related errors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00

https://doi.org/10.1145/3551349.3561154

Previous work has shown that channel-related concurrency errors

are frequent in Go programs [13, 14, 24]. A common erroneous

pattern involves a thread waiting on a blocking channel operation

that will never be unblocked by any other thread, often due to

some unexpected condition occurring for potential communication

partners. Repeated occurrences of such progress failures may drain

system resources and eventually cause execution to halt.

To detect such blocking errors automatically ahead of program

execution, we propose an approach based on abstract interpreta-

tion. Our analysis first locates channel creation and communication

operations by leveraging existing basic analyses for producing call

graphs and aliasing information, and identifies for each channel a

program fragment covering its operations. Each fragment is then

analyzed separately using abstract interpretation, hence the term

localized abstract interpretation, to infer a finite transition system

that flow-sensitively models the state space for the relevant threads

and channels in the fragment. Dynamic thread creation may lead

to a statically unbounded number of threads, causing challenges

for static analysis. The localized analysis approach partially cir-

cumvents this issue for fragments that may execute an unbounded

number of times at run-time but where each execution only involves

a bounded number of threads. The last step consists of analyzing

the generated transition systems, looking for configurations where

a thread may be blocked indefinitely, in which case a potential error

is reported.

Our approach is inspired by GCatch [14], which aims to detect

the same category of errors and similarly analyzes selected program

fragments one-by-one. The central difference is that GCatch does

not use abstract interpretation but instead enumerates potential

execution paths for each thread within the fragment and uses an

SMT solver to compose the paths and detect blocked threads. We

believe it is simpler to model channel operations and other Go

language constructs using abstract interpretation instead of SMT

encodings. The tool Gomela [5, 6] has similar goals and is based

on bounded model checking of Promela-encoded Go programs. It

obtains high scalability on real-world code, but detects relatively

few blocking errors. Another recent approach is GFuzz [13], which

detects blocking errors by fuzzing concrete executions obtained by

running the programs’ test suites. That approach relies on high-

coverage test suites to be effective.

Preliminary experiments show that our localized abstract inter-

pretation approach scales to large Go programs (typically analyzing

each fragment in less than a second), it is capable of finding many

blocking errors that are missed by the existing state-of-the-art tools,

and it has an acceptable false positive rate (less than 50%).

These results are enabled by some pragmatic design choices:

(1) A common programming pattern involves worker pools with

https://doi.org/10.1145/3551349.3561154
https://doi.org/10.1145/3551349.3561154

ASE ’22, October 10–14, 2022, Rochester, MI, USA Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller

correlated loops, which we handle in a light-weight manner by

modeling only a fixed number of loop iterations. (2) The localized

abstract interpreter models a coarse-grained thread scheduler that

intuitively ignores potential shared-memory data races, giving a

substantial state space reduction. As our goal is not to detect data

races but channel-related issues, it is acceptable that not all possible

interleavings are explored. Disabling these techniques reduces the

performance and accuracy of the analysis.

In summary, the contributions of this paper are:

• We demonstrate that localized abstract interpretation is a

promising approach to detect channel-related concurrency

errors. This is notable, because abstract interpretation is

historically rarely used for reasoning about such concurrency

errors due to the large state spaces that often appear.

• By experimentally evaluating the approach on 6 large real-

world Go programs, we show that it compares favorably with

the state-of-the-art tools GCatch and GFuzz. Specifically,

it detects 104 blocking errors that GCatch misses and 84

that GFuzz misses (thereof 76 missed by both), and most

program fragments are analyzed in seconds. Additionally,

we show that the pragmatic design choices are important

for the efficacy.

• We report on typical scenarios that cause false positives and

false negatives, which suggests interesting opportunities for

future work.

The approach is implemented in the tool Goat.
1

2 BACKGROUND
Go is a statically-typed concurrent imperative language geared

towards systems development. Threads (called “goroutines”) can

be created dynamically like in many other languages. Although

Go supports traditional shared-memory communication among

threads using locks and other basic synchronization mechanisms,

its hallmark concurrency feature is channels inspired by Hoare’s

CSP. A channel is a bounded queue that can be accessed by multi-

ple threads. Reading from a channel blocks until data is available,

and sending to a channel blocks if the channel is full. The chan-

nel capacity is selected when the channel is created. For example,

make(chan T, 3) creates a channel for values of type T with capac-

ity 3. Channels with capacity zero are called synchronous because

they require reads and corresponding writes to happen simultane-

ously. Alongside the send and receive operations (𝑐 <- · · · denotes
writing to a channel 𝑐 and · · · <- 𝑐 denotes reading), Go’s select

statement allows nondeterministic choice among enabled chan-

nel operations. Channels may also be closed, at which point their

blocked receive operations are unblocked and further send or close

operations will fail.

Channel-based concurrency is a powerful and popular language

mechanism that prevents low-level data races, but it does not pre-

vent all concurrency issues. If all threads are blocked on some chan-

nel operations, waiting for other threads to send or receive, Go’s

built-in deadlock detector aborts execution. However, a much more

common situation is that some but not all the threads are blocked,

waiting for channel operations that can never occur, because some

thread has taken an execution path that was not anticipated by the

1Go analysis tool

1 type Server interface { // Server API

2 Error() chan error
3 Ready() chan struct
4 }

5

6 func NewServer(cfg) Server {

7 s := &server{ // Server object

8 ...

9 readyc: make(chan struct {}) // Ready channel

10 errc: make(chan error , 16) // Error channel

11 }

12 ...

13 _, err = net.Listen(s.from.Scheme , addr)

14 if err != nil { // Server startup error

15 s.errc <- err

16 s.Close()

17 return s

18 }

19 go s.listenAndServe ()

20 return s

21 }

22

23 type server struct { // Server data structure

24 ...

25 readyc chan struct {}
26 errc chan error
27 }

28

29 func (s *server) listenAndServe () {

30 ...

31 close(s.readyc) // Close ready channel

32 for { ... } // Listen -and -serve loop

33 }

34

35 func (s *server) Ready() { // Ready channel getter

36 return s.readyc

37 }

38 func (s *server) Error() { // Error channel getter

39 return s.errc

40 }

41

42 func testServer () {

43 ...

44 s := NewServer(cfg)

45 - <-s.Ready() // Potential blocking error

46 + select {

47 + case <-s.Ready (): ... // Proceed normally

48 + case err := <-s.Error (): ... // Handle error

49 + }

50 ...

51 }

Figure 1: A blocking error in etcd. (Irrelevant details have
been elided, and explanatory comments have been added.)

programmer. This situation may violate desirable progress proper-

ties of the program, and it causes “goroutine leaks” that consume

precious system resources. The goal of our work is to automatically

detect whether such blocking errors are possible in a given Go

program.

Figure 1 illustrates such an error, found in etcd,
2
a distributed

key-value store implemented in Go. It involves creating a con-

figurable server (line 44), and waiting until it is ready (line 45).

Servers implement the Server interface (line 1), which contains a

2
https://etcd.io/

https://etcd.io/

Detecting Blocking Errors in Go Programs using Localized Abstract Interpretation ASE ’22, October 10–14, 2022, Rochester, MI, USA

Readymethod that returns a channel. Since creating a server may be

asynchronous, a rendezvous point is established by reading from

this channel. The servers produced by NewServer (line 6) are repre-

sented by the server structure (line 23), where the Ready method

(line 35) returns the channel embedded in the readyc field. Servers

are ready when the readyc channel is closed (line 31). NewServer

normally achieves this by spawning a thread (expressed using the

go keyword), go s.listenAndServe (line 19), that executes the close

operation. However, if an error occurs (line 14), the function re-

turns without closing the channel. In this case, reading from the

readyc channel will block indefinitely. The proposed fix for this

blocking error is to read from both the readyc and errc channels

simultaneously using a select statement (lines 45–49).

This example illustrates how channels may easily be misused.

Any client using the API similarly to the testServer function in

Figure 1 exposes itself to the resource leak. Fixing the error requires

knowledge of the implementation of NewServer and Ready, which

is complicated by having the implementation of *server methods

hidden behind the Server interface.

This particular error is missed by the existing tools GCatch

and GFuzz. GCatch fails to detect the erroneous execution path

through the relevant part of the program. GFuzz performs fuzzing of

program executions by re-ordering choices of case clauses in select

statements, which does not suffice to discover that err may be non-

nil in this case. In contrast, Goat successfully discovers the error

by analyzing a program fragment containing the functions that

involve operations on the readyc channel. The fragment does not

contain the function net.Listen, so the analysis makes a worst-case

assumption about the possible value of err, therefore considering

the path with the server start-up error where no thread is spawned

at line 19. The developers of etcd have subsequently confirmed the

error and approved the proposed fix.

3 APPROACH
Reasoning automatically about the presence or absence of blocking

errors in Go programs requires flow-sensitive analysis of multi-

threaded code and channel state. Our approach to obtain scalability

to large, real-world programs is to consider each syntactic channel

creation site individually (e.g., line 9 in Figure 1) and ignore program

code that is unlikely to affect whether operations on channels

created there may block. As an example, the code involving the

blocking error of the readyc channel, and the suggested fix shown

in Figure 1 is a tiny fraction of the 180 KLOC that constitute etcd.

Overall, the analysis of a given Go program is divided into three

main phases:

(1) The pre-analysis phase identifies channel creation sites syn-

tactically, and for each of them selects a program fragment

consisting of functions that likely cover the relevant channel

operations. To this end, we leverage the existing Go parser and

Andersen-style points-to analysis [22]. The selection of pro-

gram fragments is inspired by the one used by GCatch [14] as

explained in detail in Section 3.1.

(2) The main work is performed in the abstract interpretation
phase that analyzes each program fragment and builds a super-

location graph, which is a finite transition system that models

the state space of the fragment. In Section 3.2 we describe the

abstract domain and abstract semantics of this analysis, and

how it handles interactions with program code outside the frag-

ment. These abstractions are carefully designed to track enough

information to enable reasoning about blocking channel opera-

tions, while allowing typical fragments to be analyzed in less

than a second.

(3) In the blocking error detection phase described in Section 3.3,

the superlocation graphs are traversed, searching for abstract

threads at channel operations with no possible unblocking path.

Such threads may likely block indefinitely at run-time.

We conjecture that most uses of channels in real-world Go programs

are amenable to such localized analysis. By bounding the analysis

time for each program fragment, we effectively obtain an analysis

technique that scales linearly in the size of the program (if ignoring

the time for the pre-analysis). For programs with multiple entry

points, the precision of the pre-analysis can be improved by running

it separately for each entry point, essentially treating each entry

point as a separate program.

3.1 Pre-Analysis
The pre-analysis first runs the points-to analysis available in the

pointer package developed by the Go team [22]. Since channels are

first-class values in Go, the resulting points-to information [1] tells

us for each channel creation site which channel operations may

involve channels created at that site. Continuing the etcd example

from Figure 1, channels created at line 9 may be used only at lines 31

and 45 (before the fix is applied).We henceforth identify channels by

their syntactic creation site in the program. The points-to analysis

result also includes a call graph that approximates which functions

may be called at each call site.
3
To support the next steps, we

compute the strongly connected components (SCCs) of the call

graph and organize them in reverse topological order.

With these initial steps in place, we can perform fragment
construction that selects a set of functions, called a fragment,

for each channel 𝑐 in the program. This process is inspired by

GCatch [14] but with some extensions as explained below. The

basic idea is to locate functions that are likely relevant for reasoning

about operations on 𝑐 , building on the points-to and call graph

information. Since this may involve other channels, we first identify

a set of likely relevant channels,P(𝑐) (called 𝑃set in [14]). Intuitively,
communication operations on channels not in P(𝑐) are ignored by

the abstract interpretation of the fragment constructed for 𝑐 . The

set P(𝑐) consists of the channel 𝑐 itself and any other channel 𝑐′

that satisfies one or both of the following conditions:

C1: 𝑐′ and 𝑐 are mutually dependent. Channel 𝑐 depends on 𝑐′ if
an operation on 𝑐 that may unblock another operation on 𝑐 is

intra-procedurally reachable from a blocking operation on 𝑐′.
C2: 𝑐′ and 𝑐 are used in different cases of the same select statement.

Figure 2a illustrates C1 by a blocking error that is due to a com-

munication mismatch, which would not be revealed by analyzing

channels individually. We have that a depends on b because the

3
Imprecision of this existing analysis can lead to a large number of callees for some

call sites, especially where interface method invocation is involved. To prevent such

situations from affecting the main analysis, we prune the call graph at sites where the

number of callees exceeds an arbitrarily limit (10 in our experiments). This pragmatic

choice increases precision and speed, at the cost of causing unsoundness in the analysis.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller

read operation on line 55, which may unblock the write on line 57,

intra-procedurally requires reading from b on line 54. Conversely,

b depends on a because writing to b on line 58 requires writing to

a first on line 57. Restricting to intra-procedural reachability is a

heuristic that prevents call graph imprecision to lead to very large

P(𝑐) sets.
Figure 2b motivates C2 by showing an example of a blocking

select that would not be detected if 𝑐′ ∉ P(𝑐) and 𝑐 ∉ P(𝑐′).
An additional condition for both C1 and C2 is that the dominator

of 𝑐′ is reachable from the dominator of 𝑐 in the call graph. Here,

the dominator of a channel is the dominator in the call graph of

all the functions that might create, use, or return the channel. This

additional condition helps limiting the sizes of theP(𝑐) sets, thereby
providing a more fine-grained analysis of the program.

We extend the definition of P(𝑐) beyond the 𝑃set construction

of GCatch by also including any channel 𝑐′ in P(𝑐) that satisfies
the following condition:

C3: 𝑐′ might carry 𝑐 as a payload, irrespective of how their domi-

nators are related.

This addition of C3 is owed to our empirical observation of

programming patterns involving channels with channel payloads.

Figure 2c illustrates a non-blocking example where a would not

be included in P(b) by GCatch, leading the analysis to lose track

of the connection between b and the payload of a when ignoring

operations on a. Including a in the set of channels relevant to b

allows precise analysis of all communication in the fragment.

For each set P(𝑐) we now define a program fragment F (𝑐)
containing each function that for some 𝑐′ ∈ P(𝑐) either creates,
returns, or performs a communication operation on 𝑐′. Additionally,
F (𝑐) includes all ancestors in the call graph, up to the dominator

of those functions. We denote this dominator as the fragment entry.

Note that F (𝑐) typically does not include all functions that may be

called from the fragment. Intuitively, excluded functions that may

be called from within the fragment are considered irrelevant to

the operations on 𝑐 . For the etcd example in Figure 1, the program

fragment obtained for the channel created at line 9 contains all the

functions defined in the figure, and its entry is one called testServer.

Next, a side-effect analysis is performed, bottom-up in the

SCCs. A function is marked as potentially inducing side-effects

to a points-to analysis allocation site if the function itself, or any

function it may call directly or transitively, might write to that

allocation site. This information, derived from the points-to and

call graph analysis, is used in the abstract interpretation phase for

estimating the potential side-effects of function calls outside the

fragment under analysis.

In the etcd example, the call to s.Close at line 16 is not rele-

vant for exposing the bug involving readyc and the function being

called is not included in the fragment for the readyc channel. A

naive over-approximation of possible side-effects of that function

would assume that the readyc and errc fields may be overwritten

by invoking s.Close, losing the guarantee that future reads of these

fields yield the references to the initial channels (lines 9–10). The

side-effect analysis prevents this by marking the invocation of the

Close method as not overwriting these fields of s.

The results of the pre-analysis phase are used during abstract

interpretation, described in the next section.

52 a, b := make(chan int), make(chan int)
53 go func() {

54 <-b

55 <-a

56 }()

57 a <- 1

58 b <- 2

(a) Blocking error resulting from channel communication mis-
match, captured by condition C1.

59 a, b := make(chan int), make(chan int)
60 select {

61 case <-a:

62 case <-b:

63 }

(b) Blocking select statement, captured by condition C2.

64 a := make(chan chan int , 1)

65 go func() {

66 b := make(chan int)
67 a <- b

68 b <- 3

69 }()

70 <-<-a

(c) Common non-blocking communication pattern involving
channels with channels as payload, captured by condition C3.

Figure 2: Motivating examples for constructing P(𝑐).

3.2 Localized Abstract Interpretation
This section gives an overview of the abstract interpretation phase

by first defining the analysis domain and then describing the ab-

stract semantics in the context of analyzing program fragments. The

analysis is designed such that it aborts if it encounters certain diffi-

cult situations, which helps ensure a good balance between analysis

time, precision, and recall when analyzing a given fragment.

Analysis domain. The abstract domain is a complete lattice

that models program behavior flow-sensitively. It is defined as

A =

superlocations︷ ︸︸ ︷
(G ↩→ (𝑁 × 𝐹)︸ ︷︷ ︸

control locations

) →

abstract states︷ ︸︸ ︷
(L → V)

representing bindings from superlocations (defined below) to ab-

stract states. We next explain each of the components, 𝑁 , 𝐹 , G, L
andV .

Using the ssa package [23] and the call graph from the pre-

analysis, we obtain a control flow graph (CFG) for the given program

with a set of nodes 𝑁 and functions 𝐹 .

The set G represents abstract threads. We define G as the set

of go instructions that appear in the program, i.e., G ⊆ 𝑁 ∪ {𝜖},
where the special element 𝜖 represents the main thread. Intuitively,

each thread that may appear at run-time is represented abstractly

by the go instruction where it was spawned.

The domain ofA is the set of superlocations, where each abstract

thread from G is bound to a control location (or is undefined). In a

control location (𝑛, 𝑓) ∈ 𝑁 × 𝐹 , the CFG node 𝑛 represents the next

instruction to be executed by the corresponding thread. The func-

tion 𝑓 is the one where the thread started execution. For example,

Detecting Blocking Errors in Go Programs using Localized Abstract Interpretation ASE ’22, October 10–14, 2022, Rochester, MI, USA

for threads created at line 19 in Figure 1, 𝑓 is the listenAndServe func-

tion defined at lines 29–33. Intuitively, for a superlocation where

𝑔 ↦→ (𝑛, 𝑓), thread 𝑔 ∈ G is currently at node 𝑛 and terminates

when it leaves 𝑓 . If 𝑔 does not map to any control location, it means

that no corresponding thread exists. Since control locations are

derived from control flow nodes, any (𝑛′, 𝑓) is a successor of (𝑛, 𝑓)
if 𝑛′ is a successor of 𝑛 in the CFG. Additionally the control location

(𝑓exit , 𝑓) where 𝑓exit is the exit CFG node for 𝑓 , indicating that a

thread is at the exit of the function where it started, has a special

successor (◦, 𝑓), indicating that the thread has terminated.

L is the set of abstract stack and heap locations. These are iden-

tified syntactically by the variable declaration sites and allocation

sites, respectively, and are further distinguishable by the abstract

thread that allocates them (akin to context-sensitive heaps, or heap

cloning, in context-sensitive points-to analysis [20]).

V is the domain of abstract values. It is a product lattice that

combines standard analysis domains for each Go type: constant

propagation for basic primitive types, points-to sets for reference

types (pointers, interfaces, channel locations,
4
closures, references

to built-in dynamic data structures), and a map lattice for aggregate

data types, e.g., struct values. This is extended with the domain of

abstract channels, which is a product of four sub-domains:

(1) The channel status, represented by a four-element lattice con-

sisting of OPEN , CLOSED, undefined (⊥), and unknown (⊤).
This information is relevant for modeling channel communica-

tion (closed channels do not block on reading, whereas sending

produces an error) and payload data flow (closed channels with

empty buffers produce the zero-value for the payload type).

(2) The capacity lattice, which is a constant propagation lattice for

natural numbers, keeping track of the channel capacity.

(3) The current buffer size lattice, as an interval lattice bounded

in height by the number encoded in the capacity, if statically

decidable, or a one element lattice (unknown) otherwise.

(4) The channel payload, which is itself the abstract value lattice.

Possible payload values are joined for channels with capacities

greater than 1. For the example in Figure 2c, this definition

allows the precise modeling of the payload of channel a as the

reference to channel b.

While the abstract domain of channel payloads makes the value

lattice inductive, the type system of Go ensures that the height of

this lattice is always finite for any given Go program: named types

may not have cyclical definitions, except via indirection, which is

modeled by points-to sets.

Figure 3 depicts the execution paths of the example in Figure 1

as a graph. The top of each node represents a superlocation,
5

and the bottom is the associated abstract state. For example, at

the superlocation [𝜖 ↦→ if err != nil]2, the channel readyc has

been previously initialized, and its status is OPEN (we here focus

on the channel status and omit all the other information being

represented by the abstract states). At [𝜖 ↦→ <-s.Ready(), 𝑔1 ↦→
close(s.readyc)]6, we model the configuration where the main

thread waits on <-s.Ready(), and the child thread denoted 𝑔1, which

4
To account for potential aliasing, channels are treated as a special kind of objects

along with other reference types.

5
We denote a CFG node by its syntax and omit the function component of control loca-

tions for brevity. The subscript labels, e.g., [. . .]1 , uniquely identify the superlocations.

[𝜖 ↦→ testServerentry]1
readyc ↦→ ⊥

Fragment entry superlocation

· · ·

[𝜖 ↦→ if err != nil]2
readyc ↦→ OPEN

[𝜖 ↦→ <-s.Ready()]3
readyc ↦→ OPEN

[𝜖 ↦→ go s.listenAndServe()]4
readyc ↦→ OPEN

[𝜖 ↦→ return s, 𝑔1 ↦→ listenAndServeentry]5
readyc ↦→ OPEN

· · ·

[𝜖 ↦→ <-s.Ready(), 𝑔1 ↦→ close(s.readyc)]6
readyc ↦→ OPEN

· · ·

[𝜖 ↦→ <-s.Ready(), 𝑔1 ↦→ ◦]7
readyc ↦→ CLOSED

· · ·

then

else

Figure 3: Subset of the control flow in the example from
Figure 1, where superlocations are pairedwith abstract states.

is created at line 19, will next close the readyc channel. In abstract

states of successors of this superlocation, readyc is CLOSED. The

edges in the graph express the successor relation between the su-

perlocations, and the nodes with thick borders constitute those

included in the superlocation graph as explained later. For an exe-

cution that takes the ‘then’ branch, reading from channel readyc (at

the node marked with red) will block because there is no commu-

nication partner. Conversely, on the ‘else’ branch, 𝑔1 closes readyc,

unblocking the read operation in the main thread (at the node

marked with blue).

Notice that the abstract domain of the analysis has been designed

such that it maintains an abstract state for each superlocation rather

than tracking state for individual threads. In the example, the status

of the readyc channel importantly depends on the combination of

where the different threads are in the program.

Abstract semantics. Given a program fragment F (𝑐) with en-

try 𝑓 , the abstract interpretation computes an element of the ab-

stract domainA using a fixpoint computation, as usual inmonotone

frameworks [8].

Analysis is initiated by assigning an initial abstract state to the

entry superlocation [𝜖 ↦→ (𝑓entry, 𝑓)], i.e., the superlocation that

only maps the main thread, 𝜖 , to the entry of the function 𝑓 , where

𝑓entry is the entry CFG node for 𝑓 . All other threads are inactive (i.e.,

their control locations are undefined) at the entry superlocation.

Since the fragment entry is generally not a program entry point,

the initial abstract state is constructed such that it conservatively

ASE ’22, October 10–14, 2022, Rochester, MI, USA Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller

71 for i := range list {

72 go func() {

73 ...

74 if ... {

75 ch <- res

76 }

77 }()

78 }

79 for i := range list {

80 ...<-ch

81 }

Figure 4: Example program where communication involves
correlated loops.

models the values of any parameters or free variables using the ⊤
lattice element for the corresponding Go type. To reduce the size of

the abstract state, reference types are handled lazily as explained

below (see ‘Localized analysis’).

The abstract interpretation repeatedly applies the transfer func-

tions for the next Go instruction for each active thread, using a

worklist algorithm until the least fixpoint is reached. For brevity,

we omit a detailed description of the transfer functions; intuitively,

they simply model the semantics of Go instructions in the control

flow graphs obtained via the ssa package [23], according to the

abstraction established by the analysis domain. Some interesting

analysis design choices are involved, however, in enabling strong

updates of control locations, modeling the thread scheduler, and

handling calls to code outside the fragment being analyzed, as

explained next.

Enabling strong updates of control locations. To provide

sufficient analysis precision about channel communication, it is

important that each abstract thread represents at most one run-time

thread. This property makes it possible to strongly update the CFG

node to its successors when processing its transfer function for

an abstract thread.
6
If the analysis at a superlocation encounters a

go instruction that already represents an abstract thread (meaning

that a control location is already assigned to that abstract thread), it

simply aborts. In complete executions of whole programs, it is very

common that a syntactic go instruction is encountered multiple

times. However, because we analyze not whole programs but rela-

tively small program fragments, the consequences are less severe,

as many go instructions encountered by the analysis will spawn

functions that are not in the analyzed fragment, making the analysis

simply ignore them (while treating their potential side-effects con-

servatively). For example, the fragment of readyc in Figure 1 may be

analyzed independently, even if the fragment entry, testServer, may

be reached an unbounded amount of times in a complete program

execution.

Handling correlated loops. Figure 4 shows a common pattern

in Go programs. At lines 71–78, a statically unknown number of

worker threads are created to compute some values that are then

sent to the channel ch. At lines 79–81, the results are collected by

the main thread. Assume that, in normal executions, the worker

threads always take the branch to the send operation at line 75. In

6
This notion of strong updates is reminiscent of the one used in points-to analysis [2].

If one abstract thread could represent multiple concrete threads, the CFG node of the

control location could only be updated weakly, which would lose the effect of flow

sensitivity.

this situation, the total number of send operations is equal to the

total number of receive operations, so all the threads eventually

progress. However, if one of the worker threads does not execute

its send operation, the main thread is blocked indefinitely. This

program exemplifies correlated loops, where two loops perform

the same number of iterations as determined by the number of

elements in list. We take a lightweight approach to handling this

pattern by assuming that all loops perform exactly one iteration.

This has the advantage of reducing the number of analysis aborts

triggered by the conditions discussed above, while allowing the

analysis to detect blocking errors as the one in Figure 4. If the

error in that example is fixed by having the send operations occur

unconditionally (e.g., by removing line 74), the analysis reports no

error.

Modeling the thread scheduler. Although channels are the rec-
ommended mechanism in Go for communicating between

threads, the language also supports shared-memory concurrency.

The goal of our analysis is not to detect data races but blocking

errors caused by channel miscommunication.
7
Nevertheless, the

possibility of data races means that a perfectly sound analysis would

have to consider all possible interleavings of thread executions, at

the level of individual instructions, which quickly leads to a combi-

natorial explosion in the size of the explored superlocation set.

We alleviate this issue by treating non-communicating instruc-

tion sequences as if they were atomic, while preserving the inter-

leavings of channel operations. Intuitively, the abstract interpreter

only models thread switches that occur when the currently exe-

cuting thread is ready to communicate (or has terminated), and

communication only occurs when all threads are ready to com-

municate (or have terminated). Such a coarse-grained modeling

of thread scheduling substantially reduces the state space and can

only result in missed bugs in the presence of race conditions.

To express this more precisely, we classify each control location

as either communicating or silent to denote whether the operation

at its control flow node is a communication operation or not, re-

spectively. Each thread in a superlocation is similarly classified,

depending on the type of control location it is bound to. At a silent

superlocation, at least one thread is silent, and at a communicating

superlocation, all threads are communicating or terminated.

The analysis computes the least fixpoint 𝑎 ∈ A of the analysis

constraints by a series of approximants ⊥ = 𝑎0 ⊏ 𝑎1 ⊏ 𝑎2 ⊏ · · · ⊏
𝑎𝑛 = 𝑎 using a traditional worklist algorithm on superlocations [3,

8]. Let 𝜙 be a superlocation and 𝜎 its corresponding abstracting

state. Processing 𝜙 in the worklist algorithm produces a set of

transitions, each consisting of a successor superlocation 𝜙 ′ and an

updated abstract state 𝜎′.

• If 𝜙 is communicating, we model inter-processual data flow.

For each enabled communication operation of each thread, the

outgoing transitions are computed. Let 𝑔 be a thread in 𝜙 where

the instruction at the corresponding control location 𝜃 = 𝜙 (𝑔) is
an enabled communication operation according to the abstract

semantics of the instruction and the abstract state 𝜎 . For every

𝜙 ′ obtained by modeling the instruction at 𝜃 in 𝜙 , we have that

𝜃 ′ = 𝜙 ′ (𝑔) is a successor of 𝜃 (and similarly for any 𝑔′ which

7
This approach is supported by the design philosophy of the Go design team: “Don’t

communicate by sharing memory; share memory by communicating” [21].

Detecting Blocking Errors in Go Programs using Localized Abstract Interpretation ASE ’22, October 10–14, 2022, Rochester, MI, USA

82 type S struct { ch chan int; val int; flag bool }

83

84 func entry() {

85 s := S{ch: make(chan int , 1), val: 10, flag: false}
86 init(&s)

87 s.ch <- s.val

88 }

89

90 func init(s *S) {

91 if s.flag {

92 s.val = 0

93 }

94 }

Figure 5: Localized analysis example.

is chosen as a potential communication partner, in the case of

channel synchronization). Similarly, the corresponding abstract

state 𝜎′ is obtained by appropriately updating 𝜎 according to

the abstract semantics of the instruction at 𝜃 .

• If 𝜙 is silent, we model intra-processual data flow, by only pro-

ducing transitions for the next silent thread. The next silent

thread is selected by imposing an arbitrary but deterministic

order on threads. Let 𝑔 be the next silent thread of 𝜙 , and let

𝜃 = 𝜙 (𝑔). The set of outgoing transitions at 𝜙 is now computed

according to the abstract semantics of the (non-communicating)

instruction at 𝑔 relative to the abstract state 𝜎 .

In both cases, the next approximant is computed as the least upper

bound 𝑎𝑖+1 = 𝑎𝑖 ⊔ [𝜙 ′
1
↦→ 𝜎′

1
] ⊔ . . . ⊔ [𝜙 ′

𝑘
↦→ 𝜎′

𝑘
] where each pair

𝜙 ′
𝑗
, 𝜎′

𝑗
for 𝑗 = 1, . . . , 𝑘 is one of the generated transitions.

As an example, since [𝜖 ↦→ return s, 𝑔1 ↦→ listenAndServeentry]5
in Figure 3 is silent, we apply the intra-processual analysis, first

by modeling the sequential operations of 𝜖 until <-s.Ready() is

reached, and then those of 𝑔1 until close(s.readyc) is reached (the

intermediary steps are elided in the figure). This leads to [𝜖 ↦→
<-s.Ready(), 𝑔1 ↦→ close(s.readyc)]6, which is a communicating

superlocation, where the analysis models possible progress for

each enabled operation of 𝜖 and 𝑔1 via inter-processual data flow.

As reading from readyc is not enabled, due to readyc being OPEN

and 𝜖 not having a communication partner, only 𝑔1 can proceed

by closing readyc. Starting at the successor, we again apply the

intra-processual analysis to 𝑔1 (elided), reaching communicating

superlocation [𝜖 ↦→ <-s.Ready(), 𝑔1 ↦→ ◦]7. At this point, 𝑔1 is

terminated, while 𝜖 can proceed by reading from readyc, which is

now enabled since readyc is guaranteed to be closed.

Localized analysis. The fragment being analyzed may contain

calls to code outside the fragment. Unknown primitive values (in-

tegers, strings, etc.) that originate from such code are modeled

conservatively using the ⊤ lattice element for the corresponding

type (representing all possible values of that type), as in the con-

struction of the initial abstract state. Code outside the fragment may

also affect the abstract state due to side-effects when references

escape the fragment. Heap locations that may be affected accord-

ing to the side-effect analysis (Section 3.1) and are of a primitive

type are similarly overwritten by ⊤ elements for the corresponding

type. For every escaping heap location with a reference type, the

points-to pre-analysis provides a conservative points-to set that

models all possible side-effects to that location.

Unfortunately, Go’s standard points-to analysis that we rely on

does not support points-to queries to arbitrary heap locations but

only to SSA registers. For this reason, our implementation queries

the points-to analysis lazily, when the points-to sets of interest reach

registers. This also has the effect of reducing the sizes of the points-

to sets in the abstract states. However, it causes complications

when lazily evaluated points-to sets themselves escape the fragment

being analyzed. When that occurs, we pragmatically choose to

simply ignore side-effects involving those references. Also, we let

the analysis of a fragment abort if a lazily evaluated points-to set

contains a reference to a channel in P(𝑐), as the analysis has likely
lost too much precision in that situation.

For the fragment created for the channel allocated on line 85

in the example program in Figure 5, the fragment entry is the

function entry and the function init is not included in the frag-

ment. When the analysis reaches the call to init, the reference

to s escapes the fragment. At this point the abstract state for

the object stored at that abstract location corresponding to &s is

[ch ↦→ {make(chan int, 1)𝜖
85
}, val ↦→ 10, flag ↦→ false]. Here,

make(chan int, 1)𝜖
85

denotes a channel allocation on line 85 by the

thread 𝜖 . The side-effect analysis tells us that the field val may

be overwritten in the call to init, therefore the abstract value for

the field val is updated to ⊤. We can soundly keep the abstract

points-to set for the field ch and the constant false as the abstract

value for the field flag, as these fields cannot be written to in init.

Consequently, the abstract interpreter knows that the only channel

that is operated on at line 87 is make(chan int, 1)𝜖
85
.

To illustrate the technical issue with channel references in lazily

evaluated points-to sets, assumewemodify the assignment s.val = 0

on line 92 such that s.ch is instead assigned a newly allocated chan-

nel. The abstract value for the ch field would then be replaced by a

lazily evaluated points-to set when the call to init is encountered.

After the call, when the channel receive operation is reached on

line 87, the lazily evaluated points-to set reaches an SSA register and

is expanded by querying the points-to analysis, which returns the

points-to set {nil, make(chan int, 1)⊤
85
, make(chan int, 1)⊤

92
}, where

⊤ denotes an unknown thread. In this case, the analysis aborts be-

cause the expanded points-to set contains the channel the fragment

was created for. In our experiments we find that channel values are

rarely overwritten, so this situation is not common.

The side-effect analysis is a crucial component that tells the ab-

stract interpreter when it can soundly be assumed that channel

values are not overwritten in calls to functions outside the fragment.

Despite the technical limitations regarding points-to information

and potential for analysis failure, the experimental evaluation (Sec-

tion 4) shows that the analysis is able to find many blocking errors.

3.3 Detecting Blocking Errors
The abstract interpretation of a given program fragment produces

a superlocation graph, which is a finite transition system where

each node denotes a reachable communicating superlocation or is

the initial superlocation of the fragment, and edges are obtained

from the transitions described in Section 3.2. Given communicating

superlocations 𝜙1 and 𝜙2, there is an edge from 𝜙1 to 𝜙2 if the

abstract interpreter discovers a sequence of transitions from 𝜙1 to

𝜙2 where all the intermediate superlocations are silent.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller

The error detection phase is carried out by performing simple

model checking on the superlocation graph. Specifically, it checks

for every communicating thread 𝑔 of every superlocation 𝜙 that

there exists at least one path from 𝜙 to some 𝜙 ′ where 𝑔 has made

progress. The absence of such a path indicates a potential blocking

error in the fragment.

This approach to detecting blocking errors may have both false

positives and false negatives. Since the abstract interpretation phase

performs over-approximations, it may discover reachable superloca-

tions that do not correspond to concrete program configurations

that are reachable at run-time. Abstract threads in such superloca-

tions may exhibit blocking errors according to the check described

above, leading to false positives. Over-approximating whether tran-

sitions are enabled can also lead to blocking errors being missed,

as the produced transition system may contain spurious paths to

superlocations where a thread makes progress.

An error report specifies which thread is potentially blocked and

on which line, which channel is involved, and a shortest path in

the superlocation graph from the fragment’s entry superlocation to

the superlocation where the goroutine is blocked. This information

aids further diagnosis.

4 EVALUATION
The proposed approach is implemented in the tool Goat, on top

of existing libraries for Go program analysis, i.e., the Go package

loader, parser, type analysis, SSA IR constructor [23], and the points-

to and call graph analysis [22].We evaluate its efficacy by answering

the following research questions:

RQ1: What is the precision of the analysis for detecting blocking

errors in real-world Go programs?

RQ2: How does the analysis accuracy compare to that of the

state-of-the-art Go concurrency bug detection tools GCatch [14]

and GFuzz [13]?

RQ3: Does the analysis scale to large code bases?

RQ4: Are the central design choices (treatment of loops and

thread scheduling) important for the analysis accuracy and per-

formance?

To answer the research question regarding accuracy and perfor-

mance, and to compare with GCatch and GFuzz, we use a suite of

6 large real-world Go projects as benchmarks. These are shown

in Table 1. They are mature software systems used in critical pro-

duction environments. Also, they nearly correspond to the suite of

benchmarks used for the evaluation of GFuzz, but we have chosen

to exclude Docker as it uses a legacy dependency management and

build system. To enable comparison of our results with those of

GFuzz, we use the same version of the projects as the GFuzz artifact.

We refer to this version of the benchmarks as suite A.
The GCatch tool was evaluated on the same projects but in an

earlier state, so we manually revert the relevant fixes submitted

by the GCatch team such that rediscovering the blocking errors is

possible.
8
We refer to this version of the benchmarks as suite B.

8
Reproducible builds are not supported by older versions of Go. Using the same

versions of the projects as GCatch was evaluated on is unfortunately not possible as

we could not build them in the old state.

Whenwe runGoat on a project, we invoke it once for every pack-

age in the project that contains channel creation and consolidate

the results over all packages. The pre-analysis phase (Section 3.1)

is run once for each package, and the abstract interpretation and

blocking error detection phases (Sections 3.2 and 3.3) are run once

for each fragment produced by the pre-analysis. We impose a 60

seconds time limit on each run of the abstract interpreter.

The Goat tool and the experimental data are available at

https://brics.dk/goat/.

4.1 RQ1: Precision
Analysis precision is measured as the ratio between the analysis’

reports that are true positives and the total number of reports.

Running Goat on the 6 real-world Go projects described above

results in a set of reports of potential blocking errors. To evalu-

ate the metric the reports must be categorized into true and false

positives. Two co-authors manually performed the categorization

by inspecting the context of the reported code, and by looking at

previously reported and known blocking errors from GCatch and

GFuzz, and at the issue trackers for the relevant projects to see if

the blocking error had previously been reported or fixed. In cases

of doubt due to complex control-flow in the context of the reported

blocking error, or insufficient understanding of a project’s code, we

conservatively categorized the report as a false positive. None of

the bugs we found have yet been reported to the developers (except

for the etcd bug described in Section 2).

The results of the categorization are presented in Tables 2 and 3.

In total, Goat reports 99 true positives for suite A (obtained by

adding the ‘Shared’ true positives to those listed in theGoat column

in Table 2) and 80 false positives, and 157 true positives and 82

false positives are reported when Goat is run on suite B. Goat

achieves a precision of 99/179 ≈ 55% on suite A and a precision

of 157/239 ≈ 65% on suite B, which is on par with the precision of

GCatch. This means that roughly one in every two reports is a true

positive, which we consider acceptable for practical use.

On the suite of 6 large real-world Go projects, Goat achieves

an acceptable true positive ratio of more than 50%.

4.2 RQ2: Comparison with GFuzz and GCatch
We compare the effectiveness of our proof-of-concept blocking error

detection tool with two state-of-the-art tools GFuzz and GCatch.

Comparison with GFuzz: For this comparison we run Goat on

the benchmarks in suite A and collect the produced blocking er-

ror reports. To obtain the blocking errors reported by GFuzz we

do not attempt to run the tool itself, as it relies on a highly non-

deterministic fuzzing technique. Instead we use the list of blocking

error reports in the GFuzz artifact [12]. The results are summarized

in Table 2.

The true positive reports are separated into three non-overlapping

groups: ‘Shared’ reports are reported by both tools, whereas the

Goat and GFuzz groups denote reports that are produced exclu-

sively by the corresponding tool.

We see that the tools report a nearly disjoint set of blocking er-

rors. This is expected, as the techniques involved are very different.

GFuzz only attempts to over-approximate which select branches are

https://github.com/moby/moby
https://brics.dk/goat/

Detecting Blocking Errors in Go Programs using Localized Abstract Interpretation ASE ’22, October 10–14, 2022, Rochester, MI, USA

Name Description KLOC GitHub stars

grpc An implementation of the gRPC remote procedure call system 117 15.5K

etcd A distributed reliable key-value store 181 39.7K

go-ethereum An implementation of the Ethereum protocol 368 37.1K

tidb A distributed HTAP database compatible with MySQL 476 31.2K

prometheus A monitoring system and time series database 1 186 42.2K

kubernetes A system for managing containerized applications across multiple hosts 3 453 88.0K

Table 1: Go benchmark projects.

True positives False positives

Benchmark GFuzz Shared Goat Goat

grpc 7 1 2 6

etcd 3 4 31 11

go-ethereum 34 6 14 27

tidb 7 0 0 0

prometheus 8 3 5 6

kubernetes 15 2 31 30

Total 74 16 83 80

Table 2: Bug reports for suite A.

True positives False positives

Benchmark GCatch Shared Goat Goat GCatch

grpc 2 4 2 6 1

etcd 2 28 39 11 7

go-ethereum 3 9 25 29 15

tidb 5 0 0 0 3

prometheus 1 7 10 6 2

kubernetes 3 5 28 30 7

Total 16 53 104 82 35

Table 3: Bug reports for suite B.

chosen in an execution, while Goat also explores data-dependent

control flow, scheduling, and choice of communication partners.

Since GFuzz detects bugs in fuzzed concrete executions, the tools

reports few false positives. Nonetheless, imprecision in how GFuzz

tracks which goroutines can send on which channels causes it to

report 14 false positives according to its authors. The GFuzz artifact

additionally contains bugs reported by GCatch when run on suite

A. When the true positive reports are combined with the GFuzz

reports, Goat finds 76 bugs that are missed by both GFuzz and

GCatch.

Comparison with GCatch: We run both GCatch and Goat on

the benchmarks in suite B and collect the produced blocking error

reports. The results are summarized in Table 3. The true positive

reports are again separated into three non-overlapping groups. The

false positive reports are not separated in this fashion.

We find that Goat reports 104 true positives that GCatch misses,

whereas Goat misses 16 true positives that GCatch reports. We

inspected the 16 reports that Goat misses to understand why they

are missed. Three reports involve unsupported features, like reflec-

tion, panic and recover, or standard library functions we have not

modeled. Three errors are missed due to imprecision in abstract

channel properties, resulting from branches in sequential control

flow. GCatch handles such situations by generating different paths

for each branching point. Another two errors require precise loop

unrolling, handled by GCatch as part of its path unrolling mecha-

nism. One blocking error is missed due to Goat unsoundly pruning

the call graph. The remaining errors are undetected due to abort-

ing the analysis, with the unbounded spawning of threads as the

predominant factor.

Goat is able to detect many blocking errors that are missed

by the state-of-the-art tools GCatch and GFuzz.

4.3 RQ3: Scalability
For this research question we wish to evaluate whether the program

analysis scales to large code bases. We do this by measuring the

running time of the analysis phases on suite B (the results for suite

A are essentially the same). The results of the measurements are

presented in Table 4. The “Time” column displays the average time

per run, while the “95%” column displays the time 𝑡 such that 95%

of the runs complete in less than 𝑡 seconds.

Across all benchmarks, pre-analysis is performed 476 times,

whereas the abstract interpretation phase and the blocking error

detection phase are run 11 199 times. On average, 14 minutes are

spent in each run of the pre-analysis phase and a second is spent in

each run of the abstract interpretation phase. In these experiments

we repeat the pre-analysis for all program packages to best measure

the potential of our approach in detecting blocking errors. It is also

possible to run the pre-analysis once for all packages combined, at

the cost of a modest reduction in analysis precision. The largest

benchmark, kubernetes, is an outlier for the pre-analysis time but

is processed quickly by the main analysis phases. tidb is an out-

lier for analysis time where more than 5% of analysis runs for this

benchmark time out.

A detailed breakdown of the running time of the abstract inter-

pretation phase is presented in Figure 6. Here we see that the vast

majority of runs of the abstract interpreter finish within 5 seconds,

and that only a small number of runs (70 of 11 199 ≈ 0.6%) are

aborted due to reaching the time limit. The time required for the

blocking error detection phase is negligible.

The abstract interpretation and blocking error detection

phases of the approach finish quickly in the majority of

cases. The total analysis time is dominated by the points-to

analysis performed in the pre-analysis phase.

https://github.com/grpc/grpc-go/
https://github.com/etcd-io/etcd/
https://github.com/ethereum/go-ethereum/
https://github.com/pingcap/tidb
https://github.com/prometheus/prometheus
https://github.com/kubernetes/kubernetes

ASE ’22, October 10–14, 2022, Rochester, MI, USA Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller

Pre-analysis Main analysis

Benchmark Runs Time 95% Runs Time 95%

grpc 96 24 s 46 s 3 023 1.64 s 5 s

etcd 45 42 s 65 s 1 769 0.12 s 1 s

go-ethereum 65 31 s 54 s 3 796 0.55 s 2 s

tidb 14 1 182 s 1 958 s 342 10.99 s 60 s

prometheus 24 67 s 494 s 742 0.22 s 1 s

kubernetes 232 1 651 s 8 924 s 1 527 0.15 s 1 s

Total 476 856 s 7 774 s 11 199 1.02 s 4 s

Table 4: Number of runs and running times for pre-analysis
and main analysis.

0 5 10 15 20 25 30 35 40 45 50 55 ≥ 60
Analysis time (s)

100

101

102

103

104

Co
un

t

Figure 6: Distribution of running times.

Mode TP FP Aborts Timeouts

Normal 123 53 76% 69

Sound loops 109 46 79% 66

Fine-grained scheduler 113 47 73% 780

Table 5: Importance of design choices.

4.4 RQ4: Importance of Design Choices
For this research question we wish to evaluate the choice of model-

ing only one iteration of each loop and the coarse-grained thread

scheduler, both explained in Section 3.2. We do this by analyzing the

benchmarks in suite B with Goat in three different modes. ‘Normal’

is the default mode, ‘Sound loops’ models loops soundly as in nor-

mal abstract interpretation, and ‘Fine-grained scheduler’ replaces

the coarse-grained scheduler with a fine-grained scheduler that

considers the interleavings of all operations. In Table 5, we compare

each mode by measuring reported true and false positives, timeouts,

and the abort ratio for all benchmarks except kubernetes (which we

exclude in this experiment due to prohibitive pre-analysis times).

Disabling the special treatment of loops increases the number of

aborted analysis runs, as expected. The analysis also detects fewer

blocking errors: 16 errors are missed compared to a normal run, but

only 2 new errors are discovered. The number of false positives also

decreases, but at a smaller rate compared to that of true positives.

Modeling all interleavings, including those for silent superloca-

tions, causes a significant increase in the size of the reachable

superlocation space explored by the worklist algorithm. For exam-

ple, analyzing the fragment in Figure 1 with the approach from

Section 3.2 only computes 637 unique superlocations, while 29 629

superlocations are reached if considering all possible interleavings.

More generally, the average time for one abstract interpretation

run increases from 1.02 s to 9.43 s, the number of timeouts increases

substantially, and the number of detected errors decreases without

any significant reduction in false positives.

The pragmatic design choices positively impact the analysis

by improving the error detection capability and efficiency.

4.5 Discussion
Among the threats to the validity of the claims is the choice of

benchmarks, which may not be representative of typical Go pro-

grams. We have selected benchmarks that are used in prior work to

enable comparison, and they are large and high ranked on GitHub.

Also, mistakes during the manual inspection of reports may lead

to incorrect classification of true positives and false positives; as

mentioned we have attempted to conservatively classify difficult

cases as false positives.

In our experiments the abstract interpretation phase aborts in

73% of all runs according to the conditions described in Section 3.2

and reports no blocking errors in those cases. Although the tool

still finds many blocking errors and has a good ratio between true

and false positives according to the experiments, many errors may

remain undetected. As an interesting opportunity for future work,

it may be possible to increase the completion rate by refining the

analysis domain and the heuristics of the pre-analysis.

The GoBench [26] test suite contains 103 bug kernels, i.e., Go

programs that have been manually synthesized by extracting the

critical parts of surrounding code necessary to trigger blocking

errors found in real-world Go projects. Of these 103 kernels, 24 are

synthesized from blocking errors involving channels and are there-

fore in the scope of Goat. We find that Goat detects 12 of the 24

blocking errors (whereas GCatch detects 10), again indicating that

there may be many more errors to be found (provided that the bug

kernels are representative of real-world Go programs). Alongside

over-approximations and aborting the analysis, another prevalent

cause of missing blocking errors is the construction of P and F ,

which bothGoat and GCatch rely on. The current heuristics largely

group channels intra-procedurally, but several bug kernels expose

blocking errors caused by intricate inter-procedural interactions.

More extensions for identifying specific inter-procedural patterns

(such as C3 in Section 3.1) might improve error detection capabili-

ties while keeping the resulting fragments small, which remains to

be explored in future work.

Many false positives are due to channel operations that are un-

reachable in concrete executions but reached by the analysis due to

over-approximation. Typical causes of such over-approximations

are data-dependent control-flow, spurious cycles in the call graph,

imprecision due to channel inclusion in dynamic data structures, or

excluding critical channels from the relevant set of a given fragment.

Under-approximations also cause false positives. Call graph prun-

ing at highly imprecise call sites may remove edges to functions

Detecting Blocking Errors in Go Programs using Localized Abstract Interpretation ASE ’22, October 10–14, 2022, Rochester, MI, USA

that should be included in the fragment, and the special treatment

of loops and the coarse-grained modeling of the thread scheduler

might lead to missing control flow paths. As pointed out in Sec-

tion 3.3, over-approximation in the pre-analysis and abstract inter-

pretation phases may also cause errors to be missed in the blocking

error detection phase.

The results of the experiments for RQ3 indicate that Goatwould

benefit from more performant analyses used in the pre-analysis

phase. Our approach does not require the full points-to solution

that the analysis produces, it only needs points-to information for

channel operations and for reference values that come from outside

the fragment being analyzed. This suggests that a demand-driven

points-to analysis would be a good fit for Goat.

To limit the scope of Goat, we focus on blocking errors, but the

underlying technique may be extended to check for other channel-

related properties. The produced abstract states may be used to

check for potential safety violations, such as writing to or closing

already closed or nil-valued channels. The scope of blocking errors

can also be extended to include other common Go concurrency

primitives, like Mutex, WaitGroup, and Cond.

5 RELATEDWORK
As stated in Section 1, GCatch [14] and GFuzz [13] represent the

current state-of-the-art for automated detection of blocking errors

in real-world Go programs. The key difference to our approach is

that GCatch relies on SMT encoding of the execution paths in the

program fragments whereas Goat builds abstract state spaces for

the program fragments using abstract interpretation. We believe

abstract interpretation provides a natural approach to model the

various language features of Go, and that it is flexible for exploring

variations of the abstract domain. GFuzz is a dynamic analysis tool

that instruments select statements to force execution of specific

branches and produce alternative case selections via fuzzing. This

leads the modified executions to reach execution paths that may

be difficult to produce in traditional testing. It also instruments the

run-time of Go by collecting relationships between threads and

channels, and periodically scans the memory for threads blocked

on channels with no future communication partner. As a dynamic

analysis tool, GFuzz has high precision for the paths it explores but

is restricted to concrete executions.

Combining behavioral types and model checking is another pop-

ular approach. Techniques include deadlock detection for programs

with synchronous channels by global graph synthesis [19] and

session type inference for fenced programs [10], abstracted to a

symbolic state space for which safety and 𝑘-liveness properties

are verified. The Godel checker [11] infers session types and ver-

ifies safety and liveness properties defined as 𝜇-calculus encod-

ings via off-the-shelf LTL model checkers. Key limitations to these

approaches are difficulties in combining session types and more

precise data abstractions, and scalability to real-world Go programs

due to lack of coverage of other Go features, e.g., higher-order func-

tions, aliasing, and interfaces. The most recent approach in this

family is Gomela [5, 6], which translates Go programs to Promela

and uses SPIN [7] for model checking. The experimental results

reported for Gomela show good results on small programs but also

that it finds relatively few concurrency errors in large, real-world

Go programs.

Abstract interpretation has a solid mathematical foundation [3]

and has been studied and applied extensively for decades, mostly

for single-threaded programs but also for concurrency (see, e.g.,

[9, 16–18, 25]). Most of the existing techniques are based on thread-

modular analysis, without localization to program fragments, and

are designed for shared-memory concurrency not involving chan-

nels. Previous work on abstract interpretation for channel-based

concurrency introduced a notion of process-local static analysis

where each abstract thread flow-sensitively models an over-approx-

imation of possible futures as lattice-valued regular expressions [15].

However, it only models communication for a fixed number of

threads and synchronous channels, and has only been evaluated

on small programs, unlike our approach.

Many of these existing tools detect not only blocking errors but

also other kinds of concurrency errors. In principle,Goat can easily

be extended to also scan for safety errors, based on the superlocation

graphs it already produces, but we leave that for future work.

GCatch, Gomela and Goat all achieve scalability by analyzing

program fragments individually. The technique Goat uses for ap-

proximating the behavior of program code outside the fragment

being analyzed can be seen as a variation of the “worst-case sepa-

rate analysis” approach by Cousot and Cousot [4], except that we do

not need to compose modular analysis results. Also, we leverage the

pre-analysis and we choose to ignore certain potential side-effects

involving references as discussed in Section 3.2.

6 CONCLUSION
We have shown that localized abstract interpretation is a promising

approach to detect blocking errors in programs that use channel-

based thread communication. This approach offers an alternative to

existing techniques that rely on SMT encoding or bounded model

checking of program fragments. The pragmatic design choices make

the approach neither sound nor complete, but enable scalability

to large code bases and detection of many bugs in practice. The

implementation of the approach, Goat, can detect blocking errors

in real-world Go programs that other tools miss, with more than

50% of the reported issues being true positives.

Our experiments also suggest opportunities for further improve-

ments. Provided that the existing collection of small benchmark

programs by Yuan et al. [26] is representative of real-world us-

age of Go, many blocking errors remain beyond reach of existing

automated techniques despite the progress obtained by Goat. It

may also be worthwhile to develop more specialized pre-analyses.

Furthermore, it may be interesting to extend the analysis to also

report safety errors and to model other concurrency primitives,

by building on the superlocation graphs produced by Goat and

making further use of the flexibility of abstract interpretation.

REFERENCES
[1] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Program-

ming Language. Ph. D. Dissertation. University of Copenhagen.

[2] David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. 1990. Analysis of

Pointers and Structures. In Proceedings of the ACM SIGPLAN’90 Conference on

Programming Language Design and Implementation, PLDI 1990. ACM, 296–310.

[3] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation

ASE ’22, October 10–14, 2022, Rochester, MI, USA Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller

of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles

of Programming Languages, Los Angeles, California, USA, January 1977. ACM,

238–252. https://doi.org/10.1145/512950.512973

[4] Patrick Cousot and Radhia Cousot. 2002. Modular Static Program Analysis. In

Compiler Construction, 11th International Conference, CC 2002, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS 2002,

Grenoble, France, April 8-12, 2002, Proceedings (Lecture Notes in Computer Science,

Vol. 2304). Springer, 159–178. https://doi.org/10.1007/3-540-45937-5_13

[5] Nicolas Dilley and Julien Lange. 2020. Bounded Verification of Message-Passing

Concurrency in Go using Promela and Spin. In Proceedings of the 12th Inter-

national Workshop on Programming Language Approaches to Concurrency- and

Communication-cEntric Software, PLACES@ETAPS 2020, Dublin, Ireland, 26th April

2020 (EPTCS, Vol. 314). 34–45. https://doi.org/10.4204/EPTCS.314.4

[6] Nicolas Dilley and Julien Lange. 2021. Automated Verification of Go Programs

via Bounded Model Checking. In 36th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19,

2021. IEEE, 1016–1027. https://doi.org/10.1109/ASE51524.2021.9678571

[7] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Trans. Software Eng.

23, 5 (1997), 279–295. https://doi.org/10.1109/32.588521

[8] John B. Kam and Jeffrey D. Ullman. 1977. Monotone Data Flow Analysis Frame-

works. Acta Informatica 7 (1977), 305–317. Springer.

[9] Markus Kusano and Chao Wang. 2016. Flow-sensitive composition of thread-

modular abstract interpretation. In Proceedings of the 24th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, FSE 2016, Seattle,

WA, USA, November 13-18, 2016. ACM, 799–809. https://doi.org/10.1145/2950290.

2950291

[10] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2017. Fencing

Off Go: Liveness and Safety for Channel-Based Programming. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL 2017, Paris, France, January 18-20, 2017. ACM, 748–761. https://doi.org/10.

1145/3009837.3009847

[11] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A

Static Verification Framework for Message Passing in Go using Behavioural

Types. In Proceedings of the 40th International Conference on Software Engineering,

ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 1137–1148. https:

//doi.org/10.1145/3180155.3180157

[12] Ziheng Liu, Yu Liang, Shihao Xia, Linhai Song, and Hong Hu. 2021. GFuzz

ASPLOS 2022 #710 Artifact. https://doi.org/10.5281/zenodo.5893373

[13] Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu. 2022. Who Goes

First? Detecting Go Concurrency Bugs via Message Reordering. In ASPLOS ’22:

27th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4

March 2022. ACM, 888–902. https://doi.org/10.1145/3503222.3507753

[14] Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. 2021. Automati-

cally Detecting and Fixing Concurrency Bugs in Go Software Systems. In ASPLOS

’21: 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Virtual Event, USA, April 19-23, 2021. ACM,

616–629. https://doi.org/10.1145/3445814.3446756

[15] Jan Midtgaard, Flemming Nielson, and Hanne Riis Nielson. 2018. Process-Local

Static Analysis of Synchronous Processes. In Static Analysis - 25th International

Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings (Lecture

Notes in Computer Science, Vol. 11002). Springer, 284–305. https://doi.org/10.1007/

978-3-319-99725-4_18

[16] Antoine Miné. 2012. Static Analysis of Run-Time Errors in Embedded Real-Time

Parallel C Programs. Log. Methods Comput. Sci. 8, 1 (2012). https://doi.org/10.

2168/LMCS-8(1:26)2012

[17] AntoineMiné. 2014. Relational Thread-Modular Static Value Analysis by Abstract

Interpretation. In Verification, Model Checking, and Abstract Interpretation - 15th

International Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014,

Proceedings (Lecture Notes in Computer Science, Vol. 8318). Springer, 39–58. https:

//doi.org/10.1007/978-3-642-54013-4_3

[18] Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick Cousot,

Daniel Kästner, Stephan Wilhelm, and Christian Ferdinand. 2016. Taking Static

Analysis to the Next Level: Proving the Absence of Run-Time Errors and Data

Races with Astrée. In 8th European Congress on Embedded Real Time Software

and Systems (ERTS 2016). Toulouse, France. https://hal.archives-ouvertes.fr/hal-

01271552

[19] Nicholas Ng and Nobuko Yoshida. 2016. Static Deadlock Detection for Concurrent

Go by Global Session Graph Synthesis. In Proceedings of the 25th International

Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016.

ACM, 174–184. https://doi.org/10.1145/2892208.2892232

[20] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your

Contexts Well: Understanding Object-Sensitivity. In Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2011, Austin, TX, USA, January 26-28, 2011. ACM, 17–30. https://doi.org/10.1145/

1926385.1926390

[21] The Go Authors. 2010. Share Memory by Communicating. https://go.dev/doc/

effective_go.

[22] The Go Authors. 2022. Points-To analysis and Call Graph construction for Go.

https://pkg.go.dev/golang.org/x/tools@v0.1.10/go/pointer

[23] The Go Authors. 2022. Static Single Assignment Intermediate Representation for

Go. https://pkg.go.dev/golang.org/x/tools@v0.1.10/go/ssa

[24] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Understanding Real-

World Concurrency Bugs in Go. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019. ACM, 865–878.

https://doi.org/10.1145/3297858.3304069

[25] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo Vene, and Ralf

Vogler. 2016. Static race detection for device drivers: the Goblint approach. In

Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering, ASE 2016, Singapore, September 3-7, 2016. ACM, 391–402. https:

//doi.org/10.1145/2970276.2970337

[26] Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue. 2021. GoB-

ench: A Benchmark Suite of Real-World Go Concurrency Bugs. In IEEE/ACM

International Symposium on Code Generation and Optimization, CGO 2021, Seoul,

South Korea, February 27 - March 3, 2021. IEEE, 187–199. https://doi.org/10.1109/

CGO51591.2021.9370317

https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.4204/EPTCS.314.4
https://doi.org/10.1109/ASE51524.2021.9678571
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/2950290.2950291
https://doi.org/10.1145/2950290.2950291
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.5281/zenodo.5893373
https://doi.org/10.1145/3503222.3507753
https://doi.org/10.1145/3445814.3446756
https://doi.org/10.1007/978-3-319-99725-4_18
https://doi.org/10.1007/978-3-319-99725-4_18
https://doi.org/10.2168/LMCS-8(1:26)2012
https://doi.org/10.2168/LMCS-8(1:26)2012
https://doi.org/10.1007/978-3-642-54013-4_3
https://doi.org/10.1007/978-3-642-54013-4_3
https://hal.archives-ouvertes.fr/hal-01271552
https://hal.archives-ouvertes.fr/hal-01271552
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://go.dev/doc/effective_go
https://go.dev/doc/effective_go
https://pkg.go.dev/golang.org/x/tools@v0.1.10/go/pointer
https://pkg.go.dev/golang.org/x/tools@v0.1.10/go/ssa
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1109/CGO51591.2021.9370317
https://doi.org/10.1109/CGO51591.2021.9370317

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Pre-Analysis
	3.2 Localized Abstract Interpretation
	3.3 Detecting Blocking Errors

	4 Evaluation
	4.1 RQ1: Precision
	4.2 RQ2: Comparison with GFuzz and GCatch
	4.3 RQ3: Scalability
	4.4 RQ4: Importance of Design Choices
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

